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Introduction

What are Generative Models?

The term ‘Generative Model’ has been used in classification since before the emergence of
deep generative models.
Let X and Y represent observations and labels, respectively, in a classification problem.

1 Generative Model: Models p(X , Y ), typically by modeling p(X |Y ) and p(Y ) separately.
2 Discriminative Model: Models p(Y |X ) only and uses it directly.

Since the generative model learns p(X , Y ), it can generate data, e.g., by first sampling
Y ∼ Ber(p) and then sampling X |Y ∼ N(µY , σ2

Y ) to synthesize (X , Y ) pairs.
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Introduction

What are Generative Models?

The advent of high-dimensional and large-scale data has increased the richness of
information within the data, even without human-annotated labels, emphasizing the need
for advanced statistical methods.
Recent advancements have enabled the learning and generation of complex data. These
models are now commonly referred to as Generative AI or Generative Models.
Similar to traditional generative models used in classification, they learn the joint
distribution of all observed variables, X⃗ :

p(X⃗ ). (1)

This capability allows them to generate new data samples.
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Introduction

What are Generative Models?

In this talk, the term ‘Generative Model’ refers to statistical models that learn the
distribution of observations either without human-annotated labels or with auxiliary
information.1
Deep generative models have shown remarkable performance as:

1 simulators by generating realistic data,
2 dimension reduction tools by extracting low-dimensional representations,
3 inference tools by translating observations to other domains.

1For example, demographic information in medical data or timestamps in temporal data.
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Introduction

Application: Image Generation

After training, generative models can synthesize realistic data without prior information
such as age and race in face generation.
These models can be used to augment data, generate privacy-free samples, and enhance
virtual reality experiences.

The generated image is from http://thispersondoesnotexist.com/
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Introduction

Application: Text-to-Image Generation

Images are generated by DALL-E-2 using
“There is a clean desk in the middle. Outside the window,

a whale shark is swimming in the dark night sky above Manhattan.”
Generated images reflect semantic information in text descriptions.

Images are generated with DALL-E-2 (Ramesh et al., 2022).
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Introduction

Application: Cross Modality Transfer

Generative models are also useful in imputing missing modalities, e.g., MR → CT, or
enhancing data resolution.

Images are from Wolterink et al. (2017).
Young-geun Kim Deep Generative Model: A Statistical Perspective STT 990 (Fall 2024) 8 / 88



Introduction

Challenges in Deep Generative Models

High-dimensional Data: For data like 4K-resolution color images, the dimensionality is
3, 840 × 2, 160 × 3(≈ 24M).
Complex Structure: Image, video, audio, and language data exhibit complex structures.
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Introduction

Challenge in Deep Generative Models

How to model the distribution of high-dimensional data efficiently?
How to evaluate the generated data and train the model distribution?

Example of generated images, edited from Li et al. (2024)
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Introduction

How to Learn Distributions: Toy Example
Let’s begin with a basic example. Assume we observed n univariate samples x1, . . . , xn
having the following histogram:
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Introduction

How to Learn Distributions: Toy Example

How to learn the distribution where xi comes from?
One way is to model it as Gaussian and find the optimal mean and std parameters.
pθ(x) := (2πσ2)−1/2 exp

(
(x − µ)2/(2σ2)

)
where θ = (µ, σ2)T ∈ R × R+.2

Q: What are good evaluation criteria for optimality? How do we determine which parameter
values are superior?

2For brevity, parameter vectors are denoted without vector symbols if there is no confusion.
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Introduction

How to Learn Distributions: Toy Example
ln(θ) :=

∑n
i=1 log pθ(xi) = −(n/2) log σ2 −

∑n
i=1(xi − µ)2/(2σ2) − (n/2) log 2π

arg max
θ

ln(θ) = (µ̂n, σ̂2
n)T =

(
x̄ , n−1∑n

i=1(xi − x̄)2
)T
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Introduction

How to Learn Distributions: Toy Example

We can explain the maximum likelihood principle using Kullback-Leibler (KL) divergence.
Note that n−1ln(θ) =

∫ (
log pθ(x)

)
pn(x)dx where pn := n−1∑n

i=1 δxi . It implies

n−1ln(θ) =
∫ (

log pθ(x)/pn(x)
)
pn(x)dx +

∫ (
log pn(x)

)
pn(x)dx

= −KL(pn∥pθ) + C
(2)

where C is a constant w.r.t. θ.3

Thus, MLEs are minimizers of the KL divergence between the empirical measure and the
model density.

3Formally, KL(p||q) :=
∫

log
(
P(dx)/Q(dx)

)
P(dx) where P ≪ Q.
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Introduction

How to Learn Distributions: Toy Example

There is no closed-form expression for the MLEs when addressing complex data and
models.
We usually run iterative algorithms to approximate optimal parameters.
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Introduction

Key Elements in Generative Model
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Introduction

Key Elements in Generative Model
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Introduction

Key Elements in Generative Model

Key elements to learn generative models include
1 Model Class: Graphical models are frequently used to reflect domain knowledge
2 Statistical Distance: Statistical distances measure differences between distributions to

identify optimal generative models
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Introduction

Model Class

For example, X⃗ := (X1, . . . , Xm)T ∈ X m represents a m-dimensional random vector for
the 4K-resolution color images where m ≈ 24M.4

Each color channel value is discrete, ranging from 0 to 255 (|X | = 256).
Q: How to model p(X1 = x1, . . . , Xm = xm)?

4From now on, xi represents the realization of the i-th element in X⃗ .
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Introduction

Examples of Model Classes

1. Multivariate Categorical Distribution: Without any domain knowledge, we can
introduce parameters for each realization, e.g., p(X1 = 0, . . . , Xm = 0).
It can express all the distributions defined on the data domain. However, the number of
parameters is huge, about |X |m (approximately 1060M).

2. Degenerated Model: When (X2, . . . , Xm) are (known) deterministic functions of X1,
introducing parameters for the marginal distribution p(X1) is sufficient.
The number of parameters is small, about |X |, and invariant to the data dimension.
However, the model class is significantly reduced.

Building appropriate models that reflect domain knowledge of dependency structure is
important
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Introduction

Model Classes by Dependency Structure

We can express p(X1, . . . , Xm) as a product of conditional distributions:

p(X1)p(X2|X1) . . . p(Xm|X1, X2, . . . , Xm−1). (3)

Many dependency structures can be represented by a directed graph with m nodes
X1, . . . , Xm and (m − 1)m/2 directed edges, such as X1 → X2, . . . , Xm−1 → Xm.

For example, 1. Multivariate Categorical Distribution corresponds to the graph using
the all nodes and directed edges.
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Introduction

Model Classes by Dependency Structure

2. Degenerated Model: This model is a special case of the above graph where
pθ(X1, . . . , Xm) = pθ(X1)pθ(X2|X1) . . . pθ(Xm|X1).

3. Multivariate Independent Categorical Distribution: This model assumes the (mutual)
independency among variables, using pθ(X1, . . . , Xm) = pθ(X1) . . . pθ(Xm). It requires
|X | m parameters, but its assumption is strong.
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Introduction

Model Classes by Dependency Structure

4. Spatial Model: The value of the center pixel (e.g., X3842) depends only on adjacent
pixels (e.g., X1, . . . , X7683), making it conditionally independent of all other pixels.
The number of parameters is about |X |# of adjacent pixels + 1 × m. Assuming translation
invariance reduces it to approximately |X |# of adjacent pixels + 1.
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Introduction

Model Classes by Dependency Structure

5. Latent Variable Model: There are latent factors Z⃗ := (Z1, . . . , Zr )T , typically consisting
of independent components, that are mixed to generate data, e.g., X⃗ = AZ⃗ in
Independent Component Analysis.
The age, size, and location of eyes, light source location, and camera angle are examples
of latent factors.

The top and bottom images are from the Extended Yale-B (Georghiades et al., 2001) and Multi-pie (Gross et al.,
2010) datasets, respectively.
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Introduction

Model Classes by Dependency Structure

5. Latent Variable Model

pθ(X1, . . . , Xm) =
∫ (

pθ(X1, . . . , Xm|Z⃗ = z⃗)
)
p(Z⃗ = z⃗) dz⃗

=
∫ (

pθ(X1|Z⃗ = z⃗) · · · pθ(Xm|Z⃗ = z⃗)
) r∏

i=1
p(Zi = zi) dz⃗

(4)

When we have discrete Z⃗ , the number of parameters is approximately
(
|X | ·|Z|r

)
m.
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Introduction

Model Classes by Dependency Structure

5. Latent Variable Model
Deep generative models are predominantly based on latent variable models.
The conditional distributions pθ(X⃗ |Z⃗ ) are usually modeled as parametric family
distributions, e.g., N(µX⃗ |Z⃗ (Z⃗ ), ΣX⃗ |Z⃗ (Z⃗ )), which further reduce the number of parameters.

An example neural network for deep generative model from Radford (2015).
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Introduction

Key Elements in Generative Model

Key elements to learn generative models include
1 Model Class: Graphical models are frequently used to reflect domain knowledge
2 Statistical Distance: Statistical distances measure differences between distributions to

identify optimal generative models
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Introduction

Examples of Statistical Distances

Deep generative models learn pn by minimizing D(pn, pθ), where D denotes a statistical
distance.
The effectiveness of D varies depending on the type of data and the specific algorithm
implementation. Each D necessitates different model classes and corresponding loss
functions.
Popular choices of D include:

1 f -divergence
2 Integral Probability Metric
3 Wasserstein Distance5

4 Fisher Divergence

5Named after “Leonid Vaserštĕın", though “Wasserstein" is more commonly used in English publications.
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Introduction

Examples of Statistical Distances

1. f -divergence:
The f -divergences (Rényi, 1961) are expectations of density ratios mapped by convex
functions f : R+ → R, satisfying f (1) = 0. They can be expressed as:

Df (p||q) :=
∫

f
(

p(x⃗)
q(x⃗)

)
q(x⃗) dx⃗ (5)

The KL(pn||pθ) equals Df (pn||pθ) when f (u) = u log u.
Proof:
Df (pn||pθ) =

∫ (
pn(x⃗)/pθ(x⃗)

)
log
(
pn(x⃗)/pθ(x⃗)

)
pθ(x⃗)dx⃗ =

∫
log
(
pn(x⃗)/pθ(x⃗)

)
pn(x⃗)dx⃗ .

Thus, all maximum likelihood methods target minimizing this specific f -divergence.
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Introduction

Examples of Statistical Distances

2. Integral Probability Metric: The integral probability metrics (IPMs, Müller, 1997)
between distributions are the largest difference between their summary statistics.
For example, when we use the number of circles in images as summary statistics, the
difference is 0.5 (real) − 0.25 (generated) = 0.25.

Image source: MNIST (Deng, 2012)
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Introduction

Examples of Statistical Distances

2. Integral Probability Metric:
We can consider many summary statistics together to precisely compare distributions.
The IPMs can be expressed as:

γF (P,Q) := sup
f ∈F

∣∣∣∣∫ f (x⃗) dP(x⃗) −
∫

f (x⃗) dQ(x⃗)
∣∣∣∣ (6)

where F is a class of real-valued functions, and P and Q are probability measures.
Examples of F include the class of all 1-Lipschitz continuous functions, and functions
from reproducing kernel Hilbert space (RKHS).
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Introduction

Examples of Statistical Distances

3. Wasserstein Distance: Wasserstein distance (Monge, 1781; Kantorovich, 1960)
represents the minimum expected transportation cost between two distributions.
For example, consider the above joint distribution. The transportation cost is calculated
as:

(1/3) ×
(

0.10 × (1/3) + 0.30 × (1/3) + 0.40 × (1/3)
)

+ (1/3) ×
(

0.40 × (1/3) + 0.05 × (1/3) + 0.25 × (1/3)
)

+ (1/3) ×
(

0.25 × (1/3) + 0.30 × (1/3) + 0.10 × (1/3)
)

= 0.24.
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Introduction

Examples of Statistical Distances

3. Wasserstein Distance
We can consider another joint distribution. The transportation cost is

(1/3)
(

0.10(1) + 0.30(0) + 0.40(0)
)

+ (1/3)
(

0.40(0) + 0.05(1) + 0.25(0)
)

+ (1/3)
(

0.25(0) + 0.30(0) + 0.10(1)
)

= 0.08.
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Introduction

Examples of Statistical Distances

3. Wasserstein Distance
The p-Wasserstein distance can be expressed as

Wp(P,Q; d) :=
(

inf
π∈Π(P,Q)

∫
dp(x⃗ , x⃗ ′)dπ(x⃗ , x⃗ ′)

)1/p
(7)

where p ∈ [1, ∞) and Π(P,Q) is the set of all joint distributions whose marginals are P
and Q.
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Introduction

Examples of Statistical Distances

4. Fisher Divergence: Fisher divergence (Johnson, 2004; Hyvärinen, 2005) is the expected
difference between the (Stein) scores (Liu et al., 2016)6 of two distributions. It can be
expressed as:

FD(p ∥ q) =
∫ ∥∥∇x⃗ log p(x⃗) − ∇x⃗ log q(x⃗)

∥∥2 p(x⃗) dx⃗ . (8)

It is zero if and only if p = q.
Proof:

∇x⃗ log p(x⃗) = ∇x⃗ log q(x⃗) =⇒ p(x⃗) = Cq(x⃗) (9)

and C = 1 because
∫

p(x⃗)dx⃗ =
∫

q(x⃗)dx⃗ = 1.

6The term ‘score’ here refers to the gradient w.r.t. realizations, which differs from usual terms in parametric
family distributions.
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Introduction

Examples of Statistical Distances

4. Fisher Divergence: This is a useful measure for learning energy-based models (Teh
et al., 2003), such as Boltzmann distributions:

pθ(x⃗) = 1
C(θ) exp(−Eθ(x⃗)) (10)

where C(θ) :=
∫

exp(−Eθ(x⃗)) dx⃗ . In this case,

∇x⃗ log pθ(x⃗) = −∇x⃗Eθ(x⃗) (11)

holds, and the normalizing constant disappears.
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Introduction

Chronicle of Deep Generative Model

Variational Autoencoder (VAE, Kingma and Welling, 2014)
Generative Adversarial Network (GAN, Goodfellow et al., 2014)
f -GAN (Nowozin et al., 2016)
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Introduction

Chronicle of Deep Generative Model

Generative Moment Matching Networks (Li et al., 2015)
Maximum Mean Discrepancy GANs (Li et al., 2017)
Sobolev GANs (Mroueh et al., 2017)

Young-geun Kim Deep Generative Model: A Statistical Perspective STT 990 (Fall 2024) 36 / 88



Introduction

Chronicle of Deep Generative Model

Wasserstein GANs (Arjovsky et al., 2017)
Wasserstein GAN with gradient penalty (Gulrajani et al., 2017)
Wasserstein Autoencoders (Tolstikhin et al., 2018)
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Introduction

Chronicle of Deep Generative Model

Noise Conditional Score Networks (Song and Ermon, 2019)
Denoising Diffusion Probabilistic Models (Ho et al., 2020)
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Introduction

Advanced Topics

Asymptotic efficiencies according to statistical distances, e.g., minimax convergence rates
of IPM-based generative models (Uppal et al., 2019).
Methods for data domains other than images, e.g., generative pre-trained transformers
(GPTs, Radford, 2018) and their variations for language data.
Advanced graphical models reflecting domain knowledge, e.g., DALL-E (Ramesh et al.,
2021) for generating images from text descriptions.
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Statistical Distances in Deep Generative Models
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Statistical Distances in Deep Generative Models f Divergence-based Methods

Limitation of Pre-Deep Generative Model

Before the emergence of deep generative models, state-of-the-art methods typically
employed Markov models, requiring extensive Markov chain Monte Carlo computations.
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Statistical Distances in Deep Generative Models f Divergence-based Methods

Emergence of f -Divergence-based Methods

A line of work introduced latent variable models, utilizing deep neural networks to model
generator functions that mix latent variables to synthesize high-dimensional observations.
VAEs and GANs are popular examples of these methods, specifically targeting the
f -divergence, Df (pn∥pθ).
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Statistical Distances in Deep Generative Models f Divergence-based Methods

Recapping f -Divergence

Df (p||q) :=
∫

f
(
p(x⃗)/q(x⃗)

)
q(x⃗) dx⃗ where f : R+ → R is a convex function satisfying

f (1) = 0. Examples include KL divergence, total variation distance, and Jensen-Shannon
(JS) divergence:
KL divergence: KL(p||q) :=

∫
log(p(x⃗)/q(x⃗))p(x⃗)dx⃗

Total variation distance: δ(p, q) := 1
2
∫ ∣∣p(x⃗) − q(x⃗)

∣∣ dx⃗
Jensen-Shannon divergence:

JS(p||q) := 1
2
(
KL(p||p + q

2 ) + KL(q||p + q
2 )

)
(12)
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Statistical Distances in Deep Generative Models f Divergence-based Methods

Recapping f -Divergence

List of popular examples of f -divergences, edited from Nowozin et al. (2016).
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

1. Variational Autoencoder:
We first briefly review autoencoders (Bengio et al., 2006). Autoencoders (AEs) consist of
pairs of encoders and decoders that efficiently reduce the dimensionality of data.
Encoders embed observations into a lower-dimensional space (referred to as ‘encoding’),
while decoders map these encodings back to the original observation space (‘decoding’ or
‘reconstruction’).

Images are from Kim et al., 2021.
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

The prefix ‘auto’ is used because they autonomously learn to encode data in an
unsupervised manner.
Autoencoders (AEs) are trained by minimizing the difference between the original
observations and their reconstructions, referred to as the ‘reconstruction error’.

Images are from Kim et al., 2021.
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

AEs are nonlinear extensions of Principal Component Analysis (Kramer, 1991; Plaut,
2018).
Assuming the data (x⃗i)n

i=1 is centered, for a given dimension r , we define:

W ∗ ∈ arg min
W

n−1
n∑

i=1
∥x⃗i − WW T x⃗i∥2

 subject to W T W = Ir . (13)

Here, W T x⃗i represents the encoding process, and WW T x⃗i represents the decoding.
The W ∗ identifies optimal linear encoder and decoder pairs among symmetric AEs.
The optimal embeddings W ∗T x⃗i are the first r principal components up to orthogonal
transformations.
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

Variational Autoencoders (VAEs, Kingma and Welling, 2014) model the data generation
process using decoder networks:

pθ (⃗z , x⃗) := p(⃗z)pθ(x⃗ |⃗z)

=
( r∏

i=1
p(zi)

)( m∏
i=1

pθ(xi |⃗z)
)
.

(14)

where p(⃗z) is called the ‘prior’ distribution.
Let pθ(x⃗) :=

∫
pθ (⃗z , x⃗)dz⃗ . Then, pθ (⃗z |⃗x) represents the ‘posterior’ distribution.
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

VAEs use N(0, I) for p(⃗z) and N(µX⃗ |Z⃗ (Z⃗ ), DX⃗ |Z⃗ (Z⃗ )) for pθ(x⃗ |⃗z). Here, µX⃗ |Z⃗ is defined
as (µX1|Z⃗ , . . . , µXm|Z⃗ )T and DX⃗ |Z⃗ as diag(σ2

X1|Z⃗ , . . . , σ2
Xm|Z⃗ ), and all elements are outputs

of neural networks parameterized by θ.
In this context, the joint distribution is given by:

pθ (⃗z , x⃗) =
r∏

i=1

 1√
2π

exp
(

−z2
i
2

) m∏
i=1

 1√
2πσ2

Xi |Z⃗
(⃗z)

exp

−
(xi − µXi |Z⃗ (⃗z))2

2σ2
Xi |Z⃗

(⃗z)


 .

(15)
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Statistical Distances in Deep Generative Models f Divergence-based Methods

KL Divergence: Variational Autoencoder

Since Z⃗ is unobserved, VAEs target to maximize pθ(x⃗) :=
∫

p(⃗z)pθ(x⃗ |⃗z)dz⃗ . However, the
pθ(x⃗) does not have a closed-form expression.
VAEs apply variational inference (Bishop, 2006), introducing encoder to approximate the
posterior as qϕ(⃗z |⃗x). They maximize evidence lower bound (ELBO), a lower bound of the
evidence log pθ(x⃗):

ELBO(θ, ϕ; x⃗) := log pθ(x⃗) − KL(qϕ(⃗z |⃗x)||pθ (⃗z |⃗x))

=
∫ (

log pθ(x⃗ |⃗z)
)
qϕ(⃗z |⃗x)dz⃗ − KL(qϕ(⃗z |⃗x)||p(⃗z)).

(16)

Proof: By Bayes’ rule, the relation pθ(x⃗) = pθ(x⃗ |⃗z)p(⃗z)/pθ (⃗z |⃗x) holds, implying
log pθ(x⃗) − log

(
qϕ(⃗z |⃗x)/pθ (⃗z |⃗x)

)
= log pθ(x⃗ |⃗z) − log

(
qϕ(⃗z |⃗x)/p(⃗z)

)
. Taking the

expectation over qϕ(⃗z |⃗x) concludes the proof.
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KL Divergence: Variational Autoencoder

VAEs maximize the average of the ELBO, which is equivalent to minimizing

−
∫

ELBO(θ, ϕ; x⃗)pn(x⃗)dx⃗ . (17)

Define θ∗ ∈ arg min
θ

(
min

ϕ

(
−
∫

ELBO(θ, ϕ; x⃗)pn(x⃗)dx⃗
))

. Then, pθ∗ is a minimizer of

KL(pn∥pθ).
We assume that the encoder class {qϕ|ϕ ∈ Φ} is sufficiently flexible such that for any
given θ, there exists a ϕ∗(θ) where: qϕ∗(θ)(⃗z |⃗x) = pθ (⃗z |⃗x) (a.s. w.r.t. pn(x⃗)).
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KL Divergence: Variational Autoencoder

Proof: By Equation (16),

min
ϕ

(
−
∫

ELBO(θ, ϕ; x⃗)pn(x⃗)dx⃗
)

= min
ϕ

(
−
∫ (

log pθ(x⃗) − KL(qϕ(⃗z |⃗x)||pθ (⃗z |⃗x))
)
pn(x⃗)dx⃗

)
= KL(pn||pθ) + min

ϕ

∫
KL(qϕ(⃗z |⃗x)||pθ (⃗z |⃗x))pn(x⃗)dx⃗ + C .

Thus, min
ϕ

(
−
∫

ELBO(θ, ϕ; x⃗)pn(x⃗)dx⃗
)

= −
∫

ELBO(θ, ϕ∗(θ); x⃗)pn(x⃗)dx⃗ = KL(pn||pθ) up to
a constant addition.
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JS Divergence: Generative Adversarial Network

2. Generative Adversarial Network: Generative Adversarial Networks (GANs; Goodfellow
et al., 2014) introduce adversarial learning through two networks: a generator and a
discriminator.
The generator specifies the same graphical model used in VAEs, but x⃗ = Gθ (⃗z) where G
is a neural network, i.e., pθ(x⃗ |⃗z) degenerates to a single point.
The discriminator is a binary classifier designed to differentiate between real data and
synthetic data produced by the generator.
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JS Divergence: Generative Adversarial Network

Images were edited from https://developers.google.com/machine-learning/gan/gan_structure
and https://github.com/MorvanZhou/mnistGANs.
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JS Divergence: Generative Adversarial Network

The adversarial learning process involves alternately maximizing and minimizing the
negative cross-entropy loss:

V (θ, ϕ) :=
∫ (

log Dϕ(x⃗)
)
pn(x⃗) dx⃗ +

∫ (
log(1 − Dϕ(x⃗))

)
pθ(x⃗) dx⃗ . (18)

This process can be viewed as a two-player minimax game where the goal is to find

θ∗ ∈ arg min
θ

(
max

ϕ
V (θ, ϕ)

)
. (19)

The adversarial training consists of repeated cycles of approximating and minimizing the
JS divergence:

max
ϕ

V (θ, ϕ) = JS(pn ∥ pθ) (20)

up to a constant addition and sign-preserving multiplication. Thus, pθ∗ is the minimizer
of JS(pn ∥ pθ).
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JS Divergence: Generative Adversarial Network

The two adversarial networks, the discriminator and the generator, are trained alternately:

1 Given θ̂
(t)
n , update the discriminator to obtain ϕ̂(θ̂(t)

n ) by maximizing V (θ̂(t)
n , ϕ).

2 Given ϕ̂(θ̂(t)
n ), update the generator to obtain θ̂

(t+1)
n by minimizing V (θ, ϕ̂(θ̂(t)

n )).
3 Repeat the above processes.

Young-geun Kim Deep Generative Model: A Statistical Perspective STT 990 (Fall 2024) 54 / 88



Statistical Distances in Deep Generative Models f Divergence-based Methods

JS Divergence: Generative Adversarial Network

Again, max
ϕ

V (θ, ϕ) = JS(pn ∥ pθ) up to trivial transformations. We assume that the
discriminator class {Dϕ | ϕ ∈ Φ} is sufficiently flexible such that for any given θ, there
exists a ϕ∗(θ) where:

Dϕ∗(θ)(x⃗) = pn(x⃗)
pn(x⃗) + pθ(x⃗) . (21)

Proof: V (θ, ϕ) =
∫ (

log Dϕ(x⃗)pn(x⃗) + log(1 − Dϕ(x⃗))pθ(x⃗)
)
dx⃗ , and the integrand is

strictly concave w.r.t. Dϕ(x⃗). The first derivative of the integrand w.r.t. Dϕ(x⃗) is

− pn(x⃗) + pθ(x⃗)
Dϕ(x⃗)(1 − Dϕ(x⃗))

(
Dϕ(x⃗) − pn(x⃗)

pn(x⃗) + pθ(x⃗)

)
, (22)

implying that V (θ, ϕ) is maximized when Equation (21) holds. This implies
max

ϕ
V (θ, ϕ) = V (θ, ϕ∗(θ)) = 2JS(pn ∥ pθ) − log 4. (23)
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f -Divergence: f -GAN

3. f -GAN:
We have reviewed the following relationship in GANs, which holds up to a constant
addition and sign-preserving multiplication: Using discriminator networks parameterized
with ϕ,

JS(pn ∥ pθ) ≈ V (θ, ϕ̂n(θ)).

Nowozin et al. (2016) generalized the concept of using auxiliary networks to approximate
other f -divergences.
The key idea is to introduce the convex conjugate function (or Fenchel conjugate,
Hiriart-Urruty and Lemaréchal, 2004) to derive variational estimations of f -divergences.
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f -Divergence: f -GAN

We denote the convex conjugates of functions f by f ∗(t) := sup
u

{ut − f (u)}.

The f ∗ relates f and its subgradients. When f is convex and differentiable7, the following
properties hold:

1 f ∗ is also convex and differentiable.
2 Duality holds, i.e., (f ∗)∗ = f .
3 The relation f (u) + f ∗(t) = ut holds if and only if t = f ′(u).

When f ′ is invertible, f ∗(t) = (f ′)−1(t)t − (f ◦ f ′−1)(t).

7For more general functions, check Hiriart-Urruty and Lemaréchal (2004).
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f -Divergence: f -GAN

By duality and the definition of supremum, we have the following variational formulation:

Df (pn||pθ) =
∫

sup
t

{pn(x⃗)
pθ(x⃗) t − f ∗(t)

}
pθ(x⃗)dx⃗

≥ sup
Tϕ

(∫
Tϕ(x⃗)pn(x⃗)dx⃗ −

∫
f ∗(Tϕ(x⃗))pθ(x⃗)dx⃗

)
.

(24)

We assume that f is differentiable and that {Tϕ|ϕ ∈ Φ} is sufficiently flexible such that
for any given θ, there exists ϕ∗(θ) where:

Tϕ∗(θ)(x⃗) = f ′(pn(x⃗)/pθ(x⃗)). (25)

This satisfies the equality condition of Equation (24).
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f -Divergence: f -GAN

Define F (θ, ϕ) :=
∫

Tϕ(x⃗)pn(x⃗) dx⃗ −
∫

f ∗
(
Tϕ(x⃗)

)
pθ(x⃗) dx⃗ and

θ∗ := arg min
θ

(
max

ϕ
F (θ, ϕ)

)
.

Then, max
ϕ

F (θ, ϕ) = F (θ, ϕ∗(θ)) = Df (pn∥pθ). Thus, pθ∗ is a minimizer of the
f -divergence.
Example 1 (KL divergence): Let f (u) = u log u and f ∗(t) = exp(t − 1). We can
express F (θ, ϕ) as follows:

F (θ, ϕ) =
∫

Tϕ(x⃗)pn(x⃗) dx⃗ −
∫

exp
(
Tϕ(x⃗) − 1

)
pθ(x⃗) dx⃗ . (26)
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f -Divergence: f -GAN

Example 2 (JS divergence): Let f (u) = −(u + 1) log 1+u
2 + u log u and

f ∗(t) = − log(2 − exp(t)). We can express F (θ, ϕ) as follows:

F (θ, ϕ) =
∫

Tϕ(x⃗)pn(x⃗) dx⃗ +
∫

log
(

2 − exp
(
Tϕ(x⃗)

))
pθ(x⃗) dx⃗ . (27)

GANs are special cases of f -GANs. When we model Tϕ(x⃗) = log Dϕ(x⃗) + log 2,
F (θ, ϕ) = V (θ, ϕ) + log 4, and Tϕ∗(θ)(x⃗) = log Dϕ∗(θ)(x⃗) + log 2 = log pn(x⃗)

pn(x⃗)+pθ(x⃗) + log 2
hold.
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Generation Results: Latent Manifold Learned by VAEs

Images are edited from Kingma and Welling (2014).
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Limitation of f Divergence-based Methods

Images are edited from Tolstikhin et al. (2018) and Metz et al. (2017).
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Limitations of f -Divergence-Based Methods

The mode collapse phenomenon in GANs demonstrates that the pθ fails in capturing the
support of pn.
Several works have criticized f -divergence,

Df (pn∥pθ) =
∫

f
(

pn(x⃗)
pθ(x⃗)

)
pθ(x⃗) dx⃗ ,

pointing out that it is based on the density ratio pn/pθ, and this dependency may be a
reason for the observed failures in f -divergence-based methods.
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Emergence of IPM and Wasserstein Distances-Based Methods

As an alternative to density ratios, a line of work has proposed focusing on discrepancy
measures that are effective regardless of the differences between the supports of pn and pθ.
For example, Generative Moment Matching Networks (Li et al., 2015) aim to minimize:

∥
∫

φ(x⃗)dPn(x⃗) −
∫

φ(x⃗)dPθ(x⃗)∥2 (28)

where the integrated terms φ(x⃗) represent vectors of finite moments, e.g.,
φ(x) = (c,

√
2cx , x2)T in the univariate case with second-order moments.

This loss function is a special case of integral probability metrics, γF (pn, pθ), where F
denotes a set of summary statistics functions, such as moments.
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Emergence of IPM and Wasserstein Distances-based Methods

Another line of work has targeted
( ∫

dp(x⃗ , T (x⃗)) dx⃗
)1/p

where T transports data points
from the initial distribution to the target distribution.
This concept can be formulated as minimizing Wasserstein distances Wp(pn, pθ).

Images are edited from Santambrogio (2015).
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Recapping Integral Probability Metric

The IPMs can be expressed as:

γF (P,Q) := sup
f ∈F

∣∣∣∣∫ f (x⃗) dP(x⃗) −
∫

f (x⃗) dQ(x⃗)
∣∣∣∣

where F is a class of real-valued functions, and P and Q are probability measures.
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Recapping Integral Probability Metric

Total Variation Distance: The total variation distance, δ(p, q) = 1
2
∫ ∣∣p(x⃗) − q(x⃗)

∣∣ dx⃗ ,
has an alternative expression:

sup
A∈A

∣∣P(A) − Q(A)
∣∣ = sup

A∈A

∣∣∣∣∫ I(x⃗ ∈ A)dP(x⃗) −
∫

I(x⃗ ∈ A)dQ(x⃗)
∣∣∣∣

where A is the corresponding σ-algebra. Thus, the total variation is the IPM using the
set of indicator functions for all events.
Earth Mover’s Distance: When F consists of all 1-Lipschitz continuous functions,
γF (P,Q) corresponds to the Earth mover’s distance (or 1-Wasserstein distance), a special
case of Wasserstein distances. Further details will be discussed in the subsequent
subsection on Wasserstein distances.
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Recapping Integral Probability Metric
Maximum Mean Discrepancy (MMD): We denote the kernel mean by
µP(x⃗) :=

∫
k(x⃗ ′, x⃗)dP(x⃗ ′). Then, the MMD is defined as the difference between kernel

means in H, the RKHS specified by k:

MMDk(P,Q) := ∥µP − µQ∥H.

MMD builds a kernel-based test statistic for a two-sample test:

H0 : P = Q vs. H1 : P ̸= Q.

The MMD has important alternative representations:
1 IPM: MMDk(P,Q) = sup

∥f ∥H≤1

( ∫
f (x⃗)dP(x⃗) −

∫
f (x⃗)dQ(x⃗)

)
.

2 Kernel function form:
MMD2

k(P,Q)

=
∫

k(x⃗ , x⃗ ′)dP(x⃗)dP(x⃗ ′) − 2
∫

k(x⃗ , y⃗)dP(x⃗)dQ(y⃗) +
∫

k(y⃗ , y⃗ ′)dQ(y⃗)dQ(y⃗ ′).
(29)
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MMD: Generative Moment Matching Network

1. Generative Moment Matching Network (GMMN): GMMNs (Li et al., 2015) propose
to use empirical estimators as loss functions to train generative models rather than
introducing adversarial networks as in GANs.
Given (x⃗i)B

i=1 and (Gθ (⃗zi))B
i=1, minibatch samples of size B from Pn and Pθ respectively,

the minibatch-based empirical estimators for MMD2
k(Pn,Pθ) can be expressed as

1
B(B − 1)

B∑
i=1

B∑
j ̸=i

k(x⃗i , x⃗j) − 2
B2

B∑
i=1

B∑
j=1

k(x⃗i , Gθ (⃗zj))

+ 1
B(B − 1)

B∑
i=1

B∑
j ̸=i

k(Gθ (⃗zi), Gθ (⃗zj)).
(30)

GMMNs used a mixture of multiple Gaussian kernels with various bandwidth parameters.
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MMD: Generative Moment Matching Network

Minimizing MMDk(Pn,Pθ) can be interpreted as matching moments between Pn and Pθ.
Let k be the kernel that defines the MMD, and let φ(x⃗)8 represent the corresponding
kernel feature mapping, i.e.,

k(x⃗ , x⃗ ′) = φ(x⃗)⊤φ(x⃗ ′) (31)

For a univariate example, consider k(x , x ′) = (xx ′ + c)2 for some c > 0. The feature
mapping φ(x) = (c,

√
2cx , x2)⊤ satisfies Equation (31). Kernels with higher degrees

allow for covering higher-order moments.
The loss of GMMNs, minibatch-based empirical estimators for (squared) MMD, can be
expressed as

∥B−1
B∑

i=1
φ(x⃗i) − B−1

B∑
i=1

φ(Gθ (⃗zi))∥2. (32)

8The symbol ϕ is more commonly used, but we use φ here to avoid confusion with parameters for auxiliary
networks, e.g., the discriminator in GANs.
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MMD: MMD GAN

2. MMD GAN:
GMMNs face challenges in selecting effective kernels. MMD GANs (Li et al., 2017)
overcome this limitation by introducing adversarial kernel learning.
MMD GANs aim to target max

k∈K
MMDk(Pn,Pθ), where K is a class of kernel functions.

To model an expressive class K, MMD GANs employ a neural network Eϕ to define
(k ◦ Eϕ)(x⃗ , x⃗ ′) := k(Eϕ(x⃗), Eϕ(x⃗ ′)), targeting:

max
ϕ

MMDk◦Eϕ
(Pn,Pθ). (33)

The injectivity of Eϕ is crucial to retain the important properties of MMDs with usual
kernels. MMD-GANs incorporate an encoder architecture for Eϕ, add a decoder, and
introduce a reconstruction error-based penalty term to enforce the injectivity.
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Other IPMs

3. Methods using Other IPMs:
One of the main challenges in using IPMs,

γF (Pn,Pθ) := sup
f ∈F

∣∣∣∣∫ f (x⃗) dPn(x⃗) −
∫

f (x⃗) dPθ(x⃗)
∣∣∣∣ ,

lies in approximating the supremum over the function class F .
While MMD has a tractable representation that allows for the direct use of its empirical
estimators, this is not the case for more general IPMs.
Most methods targeting other IPMs employ neural networks to model elements within F .
Notably, Wasserstein GANs (Arjovsky et al., 2017) have become one of the most popular
methods targeting the 1-Wasserstein distance.
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Recapping Wasserstein Distance

The p-Wasserstein distance can be expressed as

Wp(P,Q; d) :=
(

inf
π∈Π(P,Q)

∫
dp(x⃗ , x⃗ ′) dπ(x⃗ , x⃗ ′)

)1/p

where p ∈ [1, ∞), and Π(P,Q) is the set of all joint distributions whose marginals are P
and Q.
(Monge-Kantorovich transportation problem) Under some conditions, there exists a map
T that satisfies

1 Wp(P,Q; d) =
(∫

dp(x⃗ , T (x⃗))dP(x⃗)
)1/p

2 P(T (x⃗)) = Q(x⃗)9

The map T is called the ‘optimal transport map’.

9This can be expressed with the push-forward operation T#P = Q.
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Recapping Wasserstein Distance

For example, when d is the Euclidean norm, Wp becomes the Mallows metric (Mallows,
1972), and has played an important role in deriving asymptotic properties of bootstrap
estimators (Bickel and Freedman, 1981; Freedman, 1981).
When p = 1, duality holds (Villani et al., 2009; Villani, 2021), which provides an IPM
formulation:

W1(P,Q; d) = sup
∥f ∥L≤1

∫
f (x⃗)dP(x⃗) −

∫
f (x⃗)dQ(x⃗) (34)

where ∥f ∥L := max{C |
∣∣f (x⃗) − f (x⃗ ′)

∣∣ ≤ Cd(x⃗ , x⃗ ′)} represents the Lipschitz constant of f .
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Recapping Wasserstein Distance

Wasserstein distances effectively quantify differences between high-dimensional
distributions when their supports are in low-dimensional manifolds.

Example
(Example 1 in Arjovsky et al., 2017) Let Z ∼ U[0, 1], X = (0, Z ), and Gθ(Z ) = (θ, Z ).

Intuitively, D(Pn=∞,Pθ) should decrease as θ vanishes.
Wp(Pn=∞,Pθ; |·|) = |θ|
JS(Pn=∞ ∥ Pθ) = log 2 if θ ̸= 0 and 0 if θ = 0
KL(Pn=∞ ∥ Pθ) = ∞ if θ ̸= 0 and 0 if θ = 0
δ(Pn=∞,Pθ) = 1 if θ ̸= 0 and 0 if θ = 0

Young-geun Kim Deep Generative Model: A Statistical Perspective STT 990 (Fall 2024) 75 / 88



Statistical Distances in Deep Generative Models Wasserstein Distance-based Methods

1-Wasserstein Distance: Wasserstein GAN

1. Wasserstein GAN (WGAN): WGANs model the class of 1-Lipschitz continuous
functions using neural networks, denoted by fϕ, with the goal of

min
θ

max
fϕ

(∫
fϕ(x⃗) dPn(x⃗) −

∫
fϕ(x⃗) dPθ(x⃗)

)
. (35)

When the set {fϕ | ϕ ∈ Φ} perfectly approximates the set {f | ∥f ∥L ≤ 1}, Equation (35)
equals to min

θ
W1(Pn,Pθ; d).

The 1-Lipschitz continuity condition is sometimes relaxed to C -Lipschitz continuity for an
arbitrary constant C . To enforce this, WGANs clip weights and biases in neural network
layers during training.
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p-Wasserstein Distance: Wasserstein Autoencoder

2. Wasserstein Autoencoder (WAE): Tolstikhin et al. (2018) derived an alternative
representation of the p-Wasserstein distance:

Wp(Pn,Pθ; d) =

 inf
Q(⃗z |⃗x):

∫
q(⃗z |⃗x)dPn(x⃗)=p(⃗z)

∫
dp(x⃗ , Gθ (⃗z))dQ(⃗z |⃗x)dPn(x⃗)

1/p

(36)

Based on this relation, WAEs introduce encoders qϕ(⃗z |⃗x) and target

θ∗ ∈ arg min
θ

(
inf

ϕ∈Φ(Pn)

∫
dp(x⃗ , Gθ (⃗z))dQϕ(⃗z |⃗x)dPn(x⃗)

)1/p

(37)

where Φ(Pn) := {ϕ |
∫

qϕ(⃗z |⃗x)dPn(x⃗) = p(⃗z)}.
On the RHS, qϕ(⃗z |⃗x) can be viewed as an encoder. The constraint in the infimum ensures
that the marginal distribution of the posterior distributions matches the prior distributions.
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p-Wasserstein Distance: Wasserstein Autoencoder

In implementation, WAEs introduce a penalty term to enforce the constraint on ϕ. The
loss can be expressed as:∫

dp(x⃗ , Gθ (⃗z))dQϕ(⃗z |⃗x)dPn(x⃗) + λDZ⃗

(∫
qϕ(⃗z |⃗x)dPn(x⃗), p(⃗z)

)
(38)

where DZ⃗ indicates the statistical distance applied to the distributions of Z⃗ . WAEs
typically use JS divergence and MMD (Maximum Mean Discrepancy) as measures for DZ⃗ .
Compared with the loss of VAEs, the negative ELBO, the penalty term changes from
matching qϕ(⃗z |⃗x) directly with p(⃗z) to matching

∫
qϕ(⃗z |⃗x)dPn(x⃗) with p(⃗z).

This difference in losses, motivated by theoretical results, may explain why WAEs often
yield sharper and more plausible generative results compared to VAEs.
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Generation Results: WAEs and WGANs

Images are edited from Arjovsky et al. (2017) and Tolstikhin et al. (2018).
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Emergence of Fisher Divergence-based Methods

IPM and Wasserstein distance-based methods have alleviated optimization issues;
however, adversarial training is still practically difficult.
Recent works have focused on score functions instead of densities, using estimated scores
to generate data.
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Recapping Fisher Divergence

Fisher divergence (Johnson, 2004) is the expected difference between the (Stein) scores
(Liu et al., 2016) of two distributions. It can be expressed as:

FD(pn ∥ pθ) =
∫ ∥∥∇x⃗ log pn(x⃗) − ∇x⃗ log pθ(x⃗)

∥∥2 pn(x⃗) dx⃗ . (39)
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Fisher Divergence: Score Matching Estimation

1. Score Matching Estimation: Score matching estimation (Hyvärinen, 2005) was
proposed targeting Fisher divergence in learning distributions.
Let Sθ(x⃗) := ∇x⃗ log pθ(x⃗). Then,

FD(pn||pθ) =
∫ (

tr(∇x⃗Sθ(x⃗)) + 1
2∥Sθ(x⃗)∥2

)
pn(x⃗) dx⃗ (40)

up to a constant addition and sign-preserving multiplication. We assume that Sθ(x⃗)pn(x⃗)
vanishes at the boundary, e.g., (x1, . . . , xi−1, ±∞, xi+1, . . . , xm).
Proof:

FD(pn||pθ) :=
∫

∥∇x⃗ log pn(x⃗) − Sθ(x⃗)∥2pn(x⃗) dx⃗

= C − 2
∫ (

ST
θ (x⃗)∇x⃗ log pn(x⃗)

)
pn(x⃗) dx⃗ +

∫
∥Sθ(x⃗)∥2pn(x⃗) dx⃗ .

(41)

Here,
∫ (

ST
θ (x⃗)∇x⃗ log pn(x⃗)

)
pn(x⃗) dx⃗ equals −

∫
tr(∇x⃗Sθ(x⃗))pn(x⃗) dx⃗ .
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Fisher Divergence: Score Matching Estimation

Proof (Cont.): Let X⃗−i := (X1, . . . , Xi−1, Xi+1, . . . , Xm)T . Then,∫ (
ST

θ (x⃗)∇x⃗ log pn(x⃗)
)
pn(x⃗) dx⃗ =

∫
ST

θ (x⃗)∇x⃗pn(x⃗) dx⃗

=
m∑

i=1

∫ ( ∫
Sθ(x⃗)i

∂

∂xi
pn(x⃗) dxi

)
dx⃗−i .

(42)

Since Sθ(x⃗)pn(x⃗) vanishes at the boundary, by partial integration, we have∫
Sθ(x⃗)i

∂

∂xi
pn(x⃗) dxi = −

∫ (
∂

∂xi
Sθ(x⃗)i

)
pn(x⃗) dxi . (43)

Thus, FD(pn||pθ) = C +
∫ (

2tr(∇x⃗Sθ(x⃗)) + ∥Sθ(x⃗)∥2
)
pn(x⃗)dx⃗ , which concludes the proof.
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Fisher Divergence: Sliced Score Matching

2. Sliced Score Matching:
In the objective of score matching estimation,

∫ (
tr(∇x⃗Sθ(x⃗)) + 1

2∥Sθ(x⃗)∥2
)
pn(x⃗) dx⃗ , the

Hessian term poses another computational challenge.
Sliced score matching (Song et al., 2020) targets sliced Fisher divergence (SFD),

SFD(pn||pθ) :=
∫ ∥∥∥v⃗T ∇x⃗ log pn(x⃗) − v⃗T ∇x⃗ log pθ(x⃗)

∥∥∥2
pn(x⃗)p(v⃗)dx⃗dv⃗ , (44)

to overcome this limitation.
The SFD is the average difference between randomly projected scores.
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Fisher Divergence: Sliced Score Matching

In a similar way used in score matching estimation,

SFD(pn||pθ) =
∫ (

v⃗T ∇x⃗Sθ(x⃗)v⃗ + 1
2(v⃗T Sθ(x⃗))2

)
pn(x⃗)p(v⃗)dx⃗dv⃗ (45)

up to a constant addition and sign-preserving multiplication.
By changing the target statistical distances from FD to SFD, the computational
bottleneck shifts from computing tr

(
∇x⃗Sθ(x⃗)

)
to computing

v⃗T ∇x⃗Sθ(x⃗) = ∇x⃗
(
v⃗T Sθ(x⃗)

)
, which is numerically less demanding.

When p(v⃗) is the multivariate standard Gaussian distribution, the equation∫ (
v⃗T Sθ(x⃗)

)2
dv⃗ = ∥Sθ(x⃗)∥2 holds, further reducing the computational cost.
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Fisher Divergence: Noise Conditional Score Network
3. Noise Conditional Score Network (NCSN): NCSNs (Song and Ermon, 2019) are

score-based generative models that use estimated scores Sθ(x⃗) to generate data.
The key idea is to introduce Langevin dynamics in the sampling process. Langevin
dynamics describes the stochastic movement of a fluid particle located at X⃗ (t):

md2X⃗ (t)
dt2 = −∇x⃗=X⃗(t)U(x⃗) − λ

dX⃗ (t)
dt +

√
2λkBTB⃗(t), (46)

where m is the mass, U is the potential functions, λ is the damping coefficient, kB is the
Boltzmann constant, T is the temperature, and B⃗(t) represents the Brownian motion.
In the overdamped case, where the inertial force is negligible, when λ = 1, we get

dX⃗ (t) = −∇x⃗=X⃗(t)U(x⃗) dt +
√

2kBT dB⃗(t) (47)

where dB⃗(t) ∼ N(0, dtIm).10 Its stationary distribution is the Boltzmann distribution with
energy U/(kBT ), p(x⃗(∞)) ∝ exp

(
− U(x⃗(∞))/(kBT )

)
.

10This is a special case of the Itô drift-diffusion process.
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Fisher Divergence: Noise Conditional Score Network

By substituting U(x⃗) = − log pn(x⃗) and setting T = 1/kB, we obtain:

dX⃗ (t) = ∇x⃗ log pn(x⃗) dt +
√

2dt E⃗(t), (48)

where E⃗(t) ∼ N(0, Im), and the corresponding stationary distribution is pn(x⃗).
The discrete approximation with dt = η/2 and Sθ∗(x⃗) results in the following iterative
sampling process:

X⃗ (t) = X⃗ (t − 1) + (η/2)Sθ∗(X⃗ (t − 1)) + √
ηE⃗(t), (49)

where X⃗ (T ) approximately follows pn(x⃗).
Since the initial points are likely to lie in low-density regions, NCSNs employ the denoising
score matching method (Vincent, 2011). They add noise to the data, X⃗ + σE⃗ , learn its
score Sθ(x⃗ ; σ), and use Sθ(x⃗ ; σ) with a sufficiently small σ for effective sampling.
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Summary

We have reviewed recent developments in deep generative models, with a particular focus
on targeted statistical distances.
Advanced topics include:

1 Introducing new statistical distances,
2 Theoretical analysis of estimation and approximation errors,
3 Development of statistical models tailored to specific data structures, such as temporal or

multi-modal data.
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